RPf-GCNs: reciprocal perspective driven fused GCNs for rumor detection on social media

Author:

Khan Zafran,Gwak Jeonghwan,Iltaf Naima,Pedrycz Witold,Jeon Moongu

Abstract

AbstractThe earliest detection of rumors across social media is the need to the hour in present global village. User’s are seamlessly connected in an unstructured network leading to rapid flow of information. User’s on the social media with malign intents may share defamatory content to contribute towards the fifth generation media warfare. The ingress of such defamatory content into society can result in panic, uncertainty and demoralization the peoples. Due to the huge amount of content over social platforms, the detection of malicious contents is hard. Earlier research while focuses on content profiling and flow of information, however, the reciprocal perspective of the source and following contents is missing. In this research, a novel Reciprocal Perspective fused Graph Convolutional Neural Network (RPf-GCN) is proposed. The proposed framework incorporates twin GCNs to encode both the bottom-up and top-down perspectives, enhancing the understanding of rumor propagation. Moreover convolutional operation is employed to fuse reciprocal perspective, providing a holistic view of the conversations. To validate the efficacy of the proposed framework, we conducted a series of experiments using real-world datasets, including PHEME and SemEval. Experimentation performed illustrates that the proposed framework outperformed over various baselines in two different evaluation metrics namely Macro F1 (for PHEME 0.736, for SemEval 0.461) and Accuracy (for PHEME 0.748, for SemEval 0.658).

Funder

Institute for Information and Communications Technology Promotion

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Reference40 articles.

1. Rubin VL. On deception and deception detection: content analysis of computer-mediated stated beliefs. Proc Am Soc Inf Sci Technol. 2010;47(1):1–10.

2. DiFonzo N, Bordia P. Rumor, gossip and urban legends. Diogenes. 2007;54(1):19–35.

3. Qazvinian V, Rosengren E, Radev D, Mei Q. Rumor has it: identifying misinformation in microblogs. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. 2011:pp. 1589–1599.

4. Ma J, Gao W, Wong KF. Rumor detection on twitter with tree-structured recursive neural networks 2018.

5. Li Q, Zhang Q, Si L. Rumor detection by exploiting user credibility information, attention and multi-task learning. In: Proceedings of the 57th annual meeting of the association for computational linguistics. 2019:pp. 1173–1179.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3