Spoofing keystroke dynamics authentication through synthetic typing pattern extracted from screen-recorded video

Author:

Siahaan Chrisando Ryan Pardomuan,Chowanda Andry

Abstract

AbstractAs the inter-connectivity in cyberspace continues to increase exponentially, privacy and security have become two of the most concerning issues that need to be tackled in today’s state of technology. Therefore, password-based authentication should no longer be used without an additional layer of authentication, namely two-factor authentication (2FA). One of the most promising 2FA approaches is Keystroke Dynamics, which relies on the unique typing behaviour of the users. Since its discovery, Keystroke Dynamics adoption has been continuously growing to many use cases: generally to obtain access to a platform through typing behaviour similarity, into a continuous keystroke monitoring on e-learning or e-exams platforms to detect illegitimate participants or cheaters. As the adoption of Keystroke Dynamics continues to grow, so does the threats that are lurking in. This paper proposes a novel exploitation method that utilizes computer vision to extract and learn a user’s typing pattern just from a screen-recorded video that captures their typing process. By using a screen-recorded video, an attacker could eliminate the needs to inject a keylogger into the victim’s computer, thus rendering the attack easier to perform and more difficult to detect. Furthermore, the extracted typing pattern can be used to spoof a Keystroke Dynamics authentication mechanism with an evasion rate as high as 64%, a considerably alarming rate given the impact it yields if the attacks are successful, which allows an attacker to pretend, mimic, and falsely authenticate as the victim (i.e., total account takeover). This paper also shows that from a screen-recorded video, one can produce a staggering statistical similarity in keystroke timing patterns as if they used an actual keylogger, and the extracted patterns can be potentially used to spoof the Keystroke Dynamics authentication service. To the author’s best knowledge, there is no precedence of previous research that suggests this kind of attack (i.e. using video to spoof keystroke dynamics). This research can be used as the baseline for future research in this area.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3