Adapting transformer-based language models for heart disease detection and risk factors extraction

Author:

Houssein Essam H.,Mohamed Rehab E.,Hu Gang,Ali Abdelmgeid A.

Abstract

AbstractEfficiently treating cardiac patients before the onset of a heart attack relies on the precise prediction of heart disease. Identifying and detecting the risk factors for heart disease such as diabetes mellitus, Coronary Artery Disease (CAD), hyperlipidemia, hypertension, smoking, familial CAD history, obesity, and medications is critical for developing effective preventative and management measures. Although Electronic Health Records (EHRs) have emerged as valuable resources for identifying these risk factors, their unstructured format poses challenges for cardiologists in retrieving relevant information. This research proposed employing transfer learning techniques to automatically extract heart disease risk factors from EHRs. Leveraging transfer learning, a deep learning technique has demonstrated a significant performance in various clinical natural language processing (NLP) applications, particularly in heart disease risk prediction. This study explored the application of transformer-based language models, specifically utilizing pre-trained architectures like BERT (Bidirectional Encoder Representations from Transformers), RoBERTa, BioClinicalBERT, XLNet, and BioBERT for heart disease detection and extraction of related risk factors from clinical notes, using the i2b2 dataset. These transformer models are pre-trained on an extensive corpus of medical literature and clinical records to gain a deep understanding of contextualized language representations. Adapted models are then fine-tuned using annotated datasets specific to heart disease, such as the i2b2 dataset, enabling them to learn patterns and relationships within the domain. These models have demonstrated superior performance in extracting semantic information from EHRs, automating high-performance heart disease risk factor identification, and performing downstream NLP tasks within the clinical domain. This study proposed fine-tuned five widely used transformer-based models, namely BERT, RoBERTa, BioClinicalBERT, XLNet, and BioBERT, using the 2014 i2b2 clinical NLP challenge dataset. The fine-tuned models surpass conventional approaches in predicting the presence of heart disease risk factors with impressive accuracy. The RoBERTa model has achieved the highest performance, with micro F1-scores of 94.27%, while the BERT, BioClinicalBERT, XLNet, and BioBERT models have provided competitive performances with micro F1-scores of 93.73%, 94.03%, 93.97%, and 93.99%, respectively. Finally, a simple ensemble of the five transformer-based models has been proposed, which outperformed the most existing methods in heart disease risk fan, achieving a micro F1-Score of 94.26%. This study demonstrated the efficacy of transfer learning using transformer-based models in enhancing risk prediction and facilitating early intervention for heart disease prevention.

Funder

Minia University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3