Exploring the efficacy of transfer learning in mining image-based software artifacts

Author:

Best Natalie,Ott Jordan,Linstead Erik J.ORCID

Abstract

Abstract Background Transfer learning allows us to train deep architectures requiring a large number of learned parameters, even if the amount of available data is limited, by leveraging existing models previously trained for another task. In previous attempts to classify image-based software artifacts in the absence of big data, it was noted that standard off-the-shelf deep architectures such as VGG could not be utilized due to their large parameter space and therefore had to be replaced by customized architectures with fewer layers. This proves to be challenging to empirical software engineers who would like to make use of existing architectures without the need for customization. Findings Here we explore the applicability of transfer learning utilizing models pre-trained on non-software engineering data applied to the problem of classifying software unified modeling language (UML) diagrams. Our experimental results show training reacts positively to transfer learning as related to sample size, even though the pre-trained model was not exposed to training instances from the software domain. We contrast the transferred network with other networks to show its advantage on different sized training sets, which indicates that transfer learning is equally effective to custom deep architectures in respect to classification accuracy when large amounts of training data is not available. Conclusion Our findings suggest that transfer learning, even when based on models that do not contain software engineering artifacts, can provide a pathway for using off-the-shelf deep architectures without customization. This provides an alternative to practitioners who want to apply deep learning to image-based classification but do not have the expertise or comfort to define their own network architectures.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Reference27 articles.

1. Ott J, Atchison A, Harnack P, Bergh A, Linstead E. A deep learning approach to identifying source code in images and video. 2018. p. 376–86. https://doi.org/10.1145/3196398.3196402.

2. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, et al. Imagenet large scale visual recognition challenge. Int J Comput Vis. 2015;115(3):211–52.

3. Ott J, Atchison A, Linstead EJ. Exploring the applicability of low-shot learning in mining software repositories. J Big Data. 2019;6(1):35. https://doi.org/10.1186/s40537-019-0198-z.

4. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition; 2014. arXiv:1409.1556.

5. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Proceedings of the 25th international conference on neural information processing systems - Volume 1. NIPS’12, pp. 1097–1105. USA: Curran Associates Inc.; 2012. http://dl.acm.org/citation.cfm?id=2999134.2999257.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3