S-RASTER: contraction clustering for evolving data streams

Author:

Ulm GregorORCID,Smith SimonORCID,Nilsson AdrianORCID,Gustavsson EmilORCID,Jirstrand MatsORCID

Abstract

AbstractContraction Clustering (RASTER) is a single-pass algorithm for density-based clustering of 2D data. It can process arbitrary amounts of data in linear time and in constant memory, quickly identifying approximate clusters. It also exhibits good scalability in the presence of multiple CPU cores. RASTER exhibits very competitive performance compared to standard clustering algorithms, but at the cost of decreased precision. Yet, RASTER is limited to batch processing and unable to identify clusters that only exist temporarily. In contrast, S-RASTER is an adaptation of RASTER to the stream processing paradigm that is able to identify clusters in evolving data streams. This algorithm retains the main benefits of its parent algorithm, i.e. single-pass linear time cost and constant memory requirements for each discrete time step within a sliding window. The sliding window is efficiently pruned, and clustering is still performed in linear time. Like RASTER, S-RASTER trades off an often negligible amount of precision for speed. Our evaluation shows that competing algorithms are at least 50% slower. Furthermore, S-RASTER shows good qualitative results, based on standard metrics. It is very well suited to real-world scenarios where clustering does not happen continually but only periodically.

Funder

VINNOVA

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Reference39 articles.

1. Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining applications. In: Proceedings of the 1998 ACM SIGMOD international conference on management of data. SIGMOD ’98. New York: ACM; 1998. p. 94–105.

2. Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic subspace clustering of high dimensional data. Data Min Knowl Discov. 2005;11(1):5–33.

3. Bação F, Lobo V, Painho M. Self-organizing maps as substitutes for k-means clustering. In: International conference on computational science. Berlin: Springer; 2005. p. 476–83.

4. Bär A, Finamore A, Casas P, Golab L, Mellia M. Large-scale network traffic monitoring with dbstream, a system for rolling big data analysis. In: 2014 IEEE international conference on big data (big data). New York: IEEE; 2014. p. 165–70.

5. Bifet A, Holmes G, Kirkby R, Pfahringer B. Moa: massive online analysis. J Mach Learn Res. 2010;11(May):1601–4.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3