Twitter sentiment analysis using hybrid gated attention recurrent network

Author:

Parveen Nikhat,Chakrabarti Prasun,Hung Bui Thanh,Shaik Amjan

Abstract

AbstractSentiment analysis is the most trending and ongoing research in the field of data mining. Nowadays, several social media platforms are developed, among that twitter is a significant tool for sharing and acquiring peoples’ opinions, emotions, views, and attitudes towards particular entities. This made sentiment analysis a fascinating process in the natural language processing (NLP) domain. Different techniques are developed for sentiment analysis, whereas there still exists a space for further enhancement in accuracy and system efficacy. An efficient and effective optimization based feature selection and deep learning based sentiment analysis is developed in the proposed architecture to fulfil it. In this work, the sentiment 140 dataset is used for analysing the performance of proposed gated attention recurrent network (GARN) architecture. Initially, the available dataset is pre-processed to clean and filter out the dataset. Then, a term weight-based feature extraction termed Log Term Frequency-based Modified Inverse Class Frequency (LTF-MICF) model is used to extract the sentiment-based features from the pre-processed data. In the third phase, a hybrid mutation-based white shark optimizer (HMWSO) is introduced for feature selection. Using the selected features, the sentiment classes, such as positive, negative, and neutral, are classified using the GARN architecture, which combines recurrent neural networks (RNN) and attention mechanisms. Finally, the performance analysis between the proposed and existing classifiers is performed. The evaluated performance metrics and the gained value for such metrics using the proposed GARN are accuracy 97.86%, precision 96.65%, recall 96.76% and f-measure 96.70%, respectively.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3