Evaluation of big data frameworks for analysis of smart grids

Author:

Ansari Mohammad Hasan,Tabatab Vakili Vahid,Bahrak Behnam

Abstract

AbstractWith the rapid development of smart grids and increasing data collected in these networks, analyzing this massive data for applications such as marketing, cyber-security, and performance analysis, has gained popularity. This paper focuses on analysis and performance evaluation of big data frameworks that are proposed for handling smart grid data. Since obtaining large amounts of smart grid data is difficult due to privacy concerns, we propose and implement a large scale smart grid data generator to produce massive data under conditions similar to those in real smart grids. We use four open source big data frameworks namely Hadoop-Hbase, Cassandra, Elasticsearch, and MongoDB, in our implementation. Finally, we evaluate the performance of different frameworks on smart grid big data and present a performance benchmark that includes common data analysis techniques on smart grid data.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3