Identification of tumor antigens and anoikis-based molecular subtypes in the hepatocellular carcinoma immune microenvironment: implications for mRNA vaccine development and precision treatment

Author:

Zheng Zhiyuan,Yang Hantao,Shi Yang,Zhou Feng,Liu Lingxiao,Yan Zhiping,Wang Xiaolin

Abstract

AbstractHepatocellular carcinoma (HCC) represents a formidable malignancy with a high lethality. Nonetheless, the development of vaccine and the establishment of prognostic models for precise and personalized treatment of HCC still encounter big challenges. Thus, the aim of this study was to develop HCC vaccines and explore anoikis-based prognostic models based on RNA sequencing data in GEO datasets (GSE10143, GSE76427) and the TCGA-LIHC cohort. Potential HCC antigens were identified using GEPIA2, cBioPortal, and TIMER2. Anoikis-related subtypes and gene clusters were defined by consensus clustering of 566 liver cancer samples based on 28 anoikis regulators, and we further analyzed their relationship with the immune microenvironment of HCC. A predictive model based on anoikis-related long noncoding RNAs (lncRNAs) was developed to accurately predict HCC prognosis. Seven overexpressed genes associated with HCC prognosis and tumor-infiltrating antigen-presenting cells were identified as potential tumor antigens for the development of HCC mRNA vaccines. Two subtypes based on anoikis-related genes (ARGs) and two gene clusters with different characteristics were identified and validated in defined cohorts. The tumor immune microenvironment between the two subtypes showed different cell infiltration and molecular characteristics. Furthermore, a prognostic score based on seven lncRNAs identified by LASSO regression was constructed, with the low-risk group having favorable prognosis, a “hot” immune microenvironment, and better response to immunotherapy. CCNB1, CDK1, DNASE1L3, KPNA2, PRC1, PTTG, and UBE2S were first identified as promising tumor antigens for mRNA vaccine development in HCC. Besides, we innovatively propose anoikis-based molecular subtypes, which not only enable personalized prognostic stratification of HCC patients but also provide a blueprint for identifying optimal candidates for tumor vaccines, enhancing immunotherapeutic strategies.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3