Author:
Zheng Zhiyuan,Yang Hantao,Shi Yang,Zhou Feng,Liu Lingxiao,Yan Zhiping,Wang Xiaolin
Abstract
AbstractHepatocellular carcinoma (HCC) represents a formidable malignancy with a high lethality. Nonetheless, the development of vaccine and the establishment of prognostic models for precise and personalized treatment of HCC still encounter big challenges. Thus, the aim of this study was to develop HCC vaccines and explore anoikis-based prognostic models based on RNA sequencing data in GEO datasets (GSE10143, GSE76427) and the TCGA-LIHC cohort. Potential HCC antigens were identified using GEPIA2, cBioPortal, and TIMER2. Anoikis-related subtypes and gene clusters were defined by consensus clustering of 566 liver cancer samples based on 28 anoikis regulators, and we further analyzed their relationship with the immune microenvironment of HCC. A predictive model based on anoikis-related long noncoding RNAs (lncRNAs) was developed to accurately predict HCC prognosis. Seven overexpressed genes associated with HCC prognosis and tumor-infiltrating antigen-presenting cells were identified as potential tumor antigens for the development of HCC mRNA vaccines. Two subtypes based on anoikis-related genes (ARGs) and two gene clusters with different characteristics were identified and validated in defined cohorts. The tumor immune microenvironment between the two subtypes showed different cell infiltration and molecular characteristics. Furthermore, a prognostic score based on seven lncRNAs identified by LASSO regression was constructed, with the low-risk group having favorable prognosis, a “hot” immune microenvironment, and better response to immunotherapy. CCNB1, CDK1, DNASE1L3, KPNA2, PRC1, PTTG, and UBE2S were first identified as promising tumor antigens for mRNA vaccine development in HCC. Besides, we innovatively propose anoikis-based molecular subtypes, which not only enable personalized prognostic stratification of HCC patients but also provide a blueprint for identifying optimal candidates for tumor vaccines, enhancing immunotherapeutic strategies.
Publisher
Springer Science and Business Media LLC
Subject
Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems