Towards a deep learning-based outlier detection approach in the context of streaming data

Author:

Hassan Asmaa F.,Barakat Sherif,Rezk Amira

Abstract

AbstractUncommon observations that significantly vary from the norm are referred to as outliers. Outlier detection, which aims to detect unexpected behavior, is a critical topic that has attracted significant attention in a wide range of research areas and application domains, including video surveillance, network intrusion detection, disease outbreak detection, and others. Deep learning-based techniques for outlier detection have currently outperformed machine learning and shallow approaches on streaming data, which are big and complicated datasets. Despite the fact that deep learning has been successfully applied in a variety of application domains, developing an effective and appropriate model is a difficult task due to the dynamic nature and variations of real-world applications and data. Hence, this research proposes a novel deep learning model based on a deep neural network (DNN) to handle the outlier detection problem in the context of streaming data. The proposed DNN model is developed with multiple hidden layers to improve feature abstraction and capabilities. Extensive experiments performed on four real-world outlier benchmark datasets, available at the UCI repository, and comparisons to state-of-the-art approaches are used to evaluate the proposed model's performance. Experiment results demonstrate that it outperforms both machine learning algorithms and deep learning competitors, resulting in significant performance gains. Particularly, when compared to other algorithms, the evaluation results clearly demonstrated the efficacy of the proposed approach, with much higher accuracy, recall and f1-score rates of 99.63%, 99.014% and 99.437%, respectively.

Funder

Mansoura University

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3