DV-DVFS: merging data variety and DVFS technique to manage the energy consumption of big data processing

Author:

Ahmadvand HosseinORCID,Foroutan Fouzhan,Fathy Mahmood

Abstract

AbstractData variety is one of the most important features of Big Data. Data variety is the result of aggregating data from multiple sources and uneven distribution of data. This feature of Big Data causes high variation in the consumption of processing resources such as CPU consumption. This issue has been overlooked in previous works. To overcome the mentioned problem, in the present work, we used Dynamic Voltage and Frequency Scaling (DVFS) to reduce the energy consumption of computation. To this goal, we consider two types of deadlines as our constraint. Before applying the DVFS technique to computer nodes, we estimate the processing time and the frequency needed to meet the deadline. In the evaluation phase, we have used a set of data sets and applications. The experimental results show that our proposed approach surpasses the other scenarios in processing real datasets. Based on the experimental results in this paper, DV-DVFS can achieve up to 15% improvement in energy consumption.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Reference40 articles.

1. Cost of Power in Large-Scale Data Centers. 4 Nov. 2018. [Online]. Available: https://perspectives.mvdirona.com/2008/11/cost-of-power-in-large-scale-data-centers/.

2. Ahmadvand H, Goudarzi M. SAIR: significance-aware approach to improve QoR of big data processing in case of budget constraint. J Supercomput. 2019;75:5760.

3. Goiri Í, Le K, Nguyen TD, Guitart J, Torres J, Bianchini R. GreenHadoop: leveraging green energy in data-processing frameworks. In: EuroSys’12 Proceedings of the 7th ACM european conference on Computer Systems, Bern, Switzerland, 2012.

4. Ying Y, Birke R, Wang C, Chen LY, Gautam N. Optimizing energy, locality and priority in a MapReduce cluster. In: 2015 IEEE International Conference on Autonomic Computing, Grenoble, France, 2015.

5. Verma A, Cherkasova L, Campbell RH. Orchestrating an ensemble of MapReduce jobs for minimizing their makespan. IEEE Trans Dependable Secure Comput. 2013;10(5):314–27.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3