Author:
Cheng Longcan,Nie Yan,Wen Hongxia,Li Yan,Zhao Yali,Zhang Qian,Lei Mingxing,Fu Shihui
Abstract
Abstract
Objective
This study was designed to develop and validate a robust predictive model for one-year mortality in elderly coronary heart disease (CHD) patients with anemia using machine learning methods.
Methods
Demographics, tests, comorbidities, and drugs were collected for a cohort of 974 elderly patients with CHD. A prospective analysis was performed to evaluate predictive performances of the developed models. External validation of models was performed in a series of 112 elderly CHD patients with anemia.
Results
The overall one-year mortality was 43.6%. Risk factors included heart rate, chronic heart failure, tachycardia and β receptor blockers. Protective factors included hemoglobin, albumin, high density lipoprotein cholesterol, estimated glomerular filtration rate (eGFR), left ventricular ejection fraction (LVEF), aspirin, clopidogrel, calcium channel blockers, angiotensin converting enzyme inhibitors (ACEIs)/angiotensin receptor blockers (ARBs), and statins. Compared with other algorithms, an ensemble machine learning model performed the best with area under the curve (95% confidence interval) being 0.828 (0.805–0.870) and Brier score being 0.170. Calibration and density curves further confirmed favorable predicted probability and discriminative ability of an ensemble machine learning model. External validation of Ensemble Model also exhibited good performance with area under the curve (95% confidence interval) being 0.825 (0.734–0.916) and Brier score being 0.185. Patients in the high-risk group had more than six-fold probability of one-year mortality compared with those in the low-risk group (P < 0.001). Shaley Additive exPlanation identified the top five risk factors that associated with one-year mortality were hemoglobin, albumin, eGFR, LVEF, and ACEIs/ARBs.
Conclusions
This model identifies key risk factors and protective factors, providing valuable insights for improving risk assessment, informing clinical decision-making and performing targeted interventions. It outperforms other algorithms with predictive performance and provides significant opportunities for personalized risk mitigation strategies, with clinical implications for improving patient care.
Publisher
Springer Science and Business Media LLC
Reference58 articles.
1. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, et al. Heart Disease and Stroke Statistics-2017 update: a Report from the American Heart Association. Circulation. 2017;135(10):e146–603.
2. writing committee. Of the report on cardiovascular h, diseases in c: report on Cardiovascular Health and diseases in China 2021: an updated Summary. Biomed Environ Sci. 2022;35(7):573–603.
3. Kaiafa G, Kanellos I, Savopoulos C, Kakaletsis N, Giannakoulas G, Hatzitolios AI. Is anemia a new cardiovascular risk factor? Int J Cardiol. 2015;186:117–24.
4. Spence RK. The economic burden of anemia in heart failure. Heart Fail Clin. 2010;6(3):373–83.
5. Kansagara D, Dyer E, Englander H, Fu R, Freeman M, Kagen D. Treatment of anemia in patients with heart disease: a systematic review. Ann Intern Med. 2013;159(11):746–57.