Detecting bots in social-networks using node and structural embeddings

Author:

Dehghan Ashkan,Siuta Kinga,Skorupka Agata,Dubey Akshat,Betlen Andrei,Miller David,Xu Wei,Kamiński Bogumił,Prałat Paweł

Abstract

AbstractUsers on social networks such as Twitter interact with each other without much knowledge of the real-identity behind the accounts they interact with. This anonymity has created a perfect environment for bot accounts to influence the network by mimicking real-user behaviour. Although not all bot accounts have malicious intent, identifying bot accounts in general is an important and difficult task. In the literature there are three distinct types of feature sets one could use for building machine learning models for classifying bot accounts. These feature-sets are: user profile metadata, natural language features (NLP) extracted from user tweets and finally features extracted from the the underlying social network. Profile metadata and NLP features are typically explored in detail in the bot-detection literature. At the same time less attention has been given to the predictive power of features that can be extracted from the underlying network structure. To fill this gap we explore and compare two classes of embedding algorithms that can be used to take advantage of information that network structure provides. The first class are classical embedding techniques, which focus on learning proximity information. The second class are structural embedding algorithms, which capture the local structure of node neighbourhood. We show that features created using structural embeddings have higher predictive power when it comes to bot detection. This supports the hypothesis that the local social network formed around bot accounts on Twitter contains valuable information that can be used to identify bot accounts.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3