ASENN: attention-based selective embedding neural networks for road distress prediction

Author:

Philip Babitha,Xu Zhenyu,AlJassmi Hamad,Zhang Qieshi,Ali Luqman

Abstract

AbstractThis study proposes an innovative neural network framework, ASENN (Attention-based Selective Embedding Neural Network), for the prediction of pavement deterioration. Considering the complexity and uncertainty associated with the pavement deterioration process, two fundamental frameworks, SEL (Selective Embedding Layer) and MDAL (Multi-Dropout Attention Layer), are combined to enhance feature abstraction and prediction accuracy. This approach is significant while analyzing the pavement deterioration process due to the high variability of the contributing deterioration factors. These factors, represented as tabular data, undergo filtering, embedding, and fusion stages in the SEL, to extract crucial features for an effective representation of pavement deterioration. Further, multiple attention-weighted combinations of raw data are obtained through the MDAL. Several SELs and MDALs were combined as basic cells and layered to form an ASENN. The experimental results demonstrate that the proposed model outperforms existing tabular models on four road distress parameter datasets corresponding to cracking, deflection, international roughness index, and rutting. The optimal number of cells was determined using different ablation settings. The results also show that the feature learning capabilities of the ASENN model improved as the number of cells increased; however, owing to the limited combination space of feature fields, extreme depths were not preferred. Furthermore, the ablation investigation demonstrated that MDAL can improve performance, particularly on the cracking dataset. Notably, compared with mainstream transformer models, ASENN requires significantly less storage and achieves faster execution speed.

Funder

United Arab Emirates University

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3