Abstract
AbstractRecommender systems have been an efficient strategy to deal with information overload by producing personalized predictions. Recommendation systems based on deep learning have accomplished magnificent results, but most of these systems are traditional recommender systems that use a single rating. In this work, we introduce a multi-criteria collaborative filtering recommender by combining deep neural network and matrix factorization. Our model consists of two parts: the first part uses a fused model of deep neural network and matrix factorization to predict the criteria ratings and the second one employs a deep neural network to predict the overall rating. The experimental results on two datasets, including a real-world dataset, show that the proposed model outperformed several state-of-the-art methods across different datasets and performance evaluation metrics.
Publisher
Springer Science and Business Media LLC
Subject
Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献