Xai-driven knowledge distillation of large language models for efficient deployment on low-resource devices

Author:

Cantini Riccardo,Orsino Alessio,Talia Domenico

Abstract

AbstractLarge Language Models (LLMs) are characterized by their inherent memory inefficiency and compute-intensive nature, making them impractical to run on low-resource devices and hindering their applicability in edge AI contexts. To address this issue, Knowledge Distillation approaches have been adopted to transfer knowledge from a complex model, referred to as the teacher, to a more compact, computationally efficient one, known as the student. The aim is to retain the performance of the original model while substantially reducing computational requirements. However, traditional knowledge distillation methods may struggle to effectively transfer crucial explainable knowledge from an LLM teacher to the student, potentially leading to explanation inconsistencies and decreased performance. This paper presents DiXtill, a method based on a novel approach to distilling knowledge from LLMs into lightweight neural architectures. The main idea is to leverage local explanations provided by an eXplainable Artificial Intelligence (XAI) method to guide the cross-architecture distillation of a teacher LLM into a self-explainable student, specifically a bi-directional LSTM network.Experimental results show that our XAI-driven distillation method allows the teacher explanations to be effectively transferred to the student, resulting in better agreement compared to classical distillation methods,thus enhancing the student interpretability. Furthermore, it enables the student to achieve comparable performance to the teacher LLM while also delivering a significantly higher compression ratio and speedup compared to other techniques such as post-training quantization and pruning, which paves the way for more efficient and sustainable edge AI applications

Funder

"FAIR – Future Artificial Intelligence Research" project

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3