CNN-IKOA: convolutional neural network with improved Kepler optimization algorithm for image segmentation: experimental validation and numerical exploration

Author:

Abdel-Basset Mohamed,Mohamed Reda,Alrashdi Ibrahim,Sallam Karam M.,Hameed Ibrahim A.

Abstract

AbstractChest diseases, especially COVID-19, have quickly spread throughout the world and caused many deaths. Finding a rapid and accurate diagnostic tool was indispensable to combating these diseases. Therefore, scientists have thought of combining chest X-ray (CXR) images with deep learning techniques to rapidly detect people infected with COVID-19 or any other chest disease. Image segmentation as a preprocessing step has an essential role in improving the performance of these deep learning techniques, as it could separate the most relevant features to better train these techniques. Therefore, several approaches were proposed to tackle the image segmentation problem accurately. Among these methods, the multilevel thresholding-based image segmentation methods won significant interest due to their simplicity, accuracy, and relatively low storage requirements. However, with increasing threshold levels, the traditional methods have failed to achieve accurate segmented features in a reasonable amount of time. Therefore, researchers have recently used metaheuristic algorithms to tackle this problem, but the existing algorithms still suffer from slow convergence speed and stagnation into local minima as the number of threshold levels increases. Therefore, this study presents an alternative image segmentation technique based on an enhanced version of the Kepler optimization algorithm (KOA), namely IKOA, to better segment the CXR images at small, medium, and high threshold levels. Ten CXR images are used to assess the performance of IKOA at ten threshold levels (T-5, T-7, T-8, T-10, T-12, T-15, T-18, T-20, T-25, and T-30). To observe its effectiveness, it is compared to several metaheuristic algorithms in terms of several performance indicators. The experimental outcomes disclose the superiority of IKOA over all the compared algorithms. Furthermore, the IKOA-based segmented CXR images at eight different threshold levels are used to train a newly proposed CNN model called CNN-IKOA to find out the effectiveness of the segmentation step. Five performance indicators, namely overall accuracy, precision, recall, F1-score, and specificity, are used to disclose the CNN-IKOA’s effectiveness. CNN-IKOA, according to the experimental outcomes, could achieve outstanding outcomes for the images segmented at T-12, where it could reach 94.88% for overall accuracy, 96.57% for specificity, 95.40% for precision, and 95.40% for recall.

Funder

the Deputyship for Research & Innovation, Ministry of Education Saudi Arabia

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3