Expanded graph embedding for joint network alignment and link prediction

Author:

Alnaimy MHD SamyORCID,Desouki Mohammad Said

Abstract

AbstractLink prediction in social networks has been an active field of study in recent years fueled by the rapid growth of many social networks. Many link prediction methods are harmed by users’ intention of avoiding being traced across networks. They may provide inaccurate information or overlook a great deal of information in multiple networks. This problem was overcome by developing methods for predicting links in a network based on known links in another network. Node alignment between the two networks significantly improves the efficiency of those methods. This research proposes a new embedding method to improve link prediction and node alignment results. The proposed embedding method is based on the Expanded Graph, which is our new novel network that has edges from both networks in addition to edges across the networks. Matrix factorization on the Finite Step Transition and Laplacian similarity matrices of the Expanded Graph has been used to obtain the embeddings for the nodes. Using the proposed embedding techniques, we jointly run network alignment and link prediction tasks iteratively to let them optimize each other’s results. We performed extensive experiments on many datasets to examine the proposed method. We achieved significant improvements in link prediction precision, which was 50% better than the peer’s method, and in recall, which was 500% better in some datasets. We also scale down the processing time of the solution to be more applicable to big social networks. We conclude that computed embedding in this type of problem is more suitable than learning the embedding since it shortens the processing time and gives better results.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Network alignment and link prediction using event-based embedding in aligned heterogeneous dynamic social networks;Applied Intelligence;2023-07-27

2. Dynamic Pagerank Frequent Subgraph Mining by GraphX in the Distributed System;2022 International Conference on Automation, Computing and Renewable Systems (ICACRS);2022-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3