Threshold optimization and random undersampling for imbalanced credit card data

Author:

Leevy Joffrey L.,Johnson Justin M.,Hancock John,Khoshgoftaar Taghi M.

Abstract

AbstractOutput thresholding is well-suited for addressing class imbalance, since the technique does not increase dataset size, run the risk of discarding important instances, or modify an existing learner. Through the use of the Credit Card Fraud Detection Dataset, this study proposes a threshold optimization approach that factors in the constraint True Positive Rate (TPR) ≥ True Negative Rate (TNR). Our findings indicate that an increase of the Area Under the Precision–Recall Curve (AUPRC) score is associated with an improvement in threshold-based classification scores, while an increase of positive class prior probability causes optimal thresholds to increase. In addition, we discovered that best overall results for the selection of an optimal threshold are obtained without the use of Random Undersampling (RUS). Furthermore, with the exception of AUPRC, we established that the default threshold yields good performance scores at a balanced class ratio. Our evaluation of four threshold optimization techniques, eight threshold-dependent metrics, and two threshold-agnostic metrics defines the uniqueness of this research.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MVQS: Robust multi-view instance-level cost-sensitive learning method for imbalanced data classification;Information Sciences;2024-07

2. Improving Credit Card Fraud Detection with Data Reduction Approaches;International Journal of Reliability, Quality and Safety Engineering;2024-05-15

3. Addressing diversity in hiring procedures: a generative adversarial network approach;AI and Ethics;2024-05-02

4. Synthesizing class labels for highly imbalanced credit card fraud detection data;Journal of Big Data;2024-03-09

5. Comparison of Undersampling Methods for Imbalanced Credit Card Fraud Dataset;2023 3rd International Conference on Advancement in Electronics & Communication Engineering (AECE);2023-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3