Prediction of probable backorder scenarios in the supply chain using Distributed Random Forest and Gradient Boosting Machine learning techniques

Author:

Islam Samiul,Amin Saman Hassanzadeh

Abstract

AbstractPrediction using machine learning algorithms is not well adapted in many parts of the business decision processes due to the lack of clarity and flexibility. The erroneous data as inputs in the prediction process may produce inaccurate predictions. We aim to use machine learning models in the area of the business decision process by predicting products’ backorder while providing flexibility to the decision authority, better clarity of the process, and maintaining higher accuracy. A ranged method is used for specifying different levels of predicting features to cope with the diverse characteristics of real-time data which may happen by machine or human errors. The range is tunable that gives flexibility to the decision managers. The tree-based machine learning is chosen for better explainability of the model. The backorders of products are predicted in this study using Distributed Random Forest (DRF) and Gradient Boosting Machine (GBM). We have observed that the performances of the machine learning models have been improved by 20% using this ranged approach when the dataset is highly biased with random error. We have utilized a five-level metric to indicate the inventory level, sales level, forecasted sales level, and a four-level metric for the lead time. A decision tree from one of the constructed models is analyzed to understand the effects of the ranged approach. As a part of this analysis, we list major probable backorder scenarios to facilitate business decisions. We show how this model can be used to predict the probable backorder products before actual sales take place. The mentioned methods in this research can be utilized in other supply chain cases to forecast backorders.

Funder

NSERC

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3