A survey and analysis of intrusion detection models based on CSE-CIC-IDS2018 Big Data

Author:

Leevy Joffrey L.ORCID,Khoshgoftaar Taghi M.

Abstract

AbstractThe exponential growth in computer networks and network applications worldwide has been matched by a surge in cyberattacks. For this reason, datasets such as CSE-CIC-IDS2018 were created to train predictive models on network-based intrusion detection. These datasets are not meant to serve as repositories for signature-based detection systems, but rather to promote research on anomaly-based detection through various machine learning approaches. CSE-CIC-IDS2018 contains about 16,000,000 instances collected over the course of ten days. It is the most recent intrusion detection dataset that is big data, publicly available, and covers a wide range of attack types. This multi-class dataset has a class imbalance, with roughly 17% of the instances comprising attack (anomalous) traffic. Our survey work contributes several key findings. We determined that the best performance scores for each study, where available, were unexpectedly high overall, which may be due to overfitting. We also found that most of the works did not address class imbalance, the effects of which can bias results in a big data study. Lastly, we discovered that information on the data cleaning of CSE-CIC-IDS2018 was inadequate across the board, a finding that may indicate problems with reproducibility of experiments. In our survey, major research gaps have also been identified.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3