Comparison of written reports of mammography, sonography and magnetic resonance mammography for preoperative evaluation of breast lesions, with special emphasis on magnetic resonance mammography
Author:
Publisher
Springer Science and Business Media LLC
Link
http://link.springer.com/content/pdf/10.1186/bcr271.pdf
Reference30 articles.
1. Orel SG, Troupin RH: Nonmammographic imaging of the breast: current issues and future prospects. Semin Roentgenol. 1993, 28: 231-241.
2. Kerlikowske K, Grady D, Rubin SM, Sandrock C, Ernster VL: Efficancy of screening mammography. JAMA. 1995, 273: 149-154.
3. Müller-Schimpfle M, Stoll P, Stern W, Kutz S, Dammann F, Claussen CD: Do mammography, sonography and MR mammography have a diagnostic benefit compared with mammography and sonography?. AJR Am J Roentgenol. 1997, 168: 1323-1329.
4. Heywang SH, Hahn D, Schmidt H, Krischke I, Eiermann W, Bassermann R, Lissner J: MR imaging of the breast using gadolinium-DTPA. J Comput Assist Tomogr. 1986, 10: 199-204.
5. Kaiser WA, Zeitler E: MR mammography: first clinical results [in German]. Röntgenpraxis. 1985, 38: 256-262.
Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Mammogram data analysis: Trends, challenges, and future directions;Computational Intelligence and Modelling Techniques for Disease Detection in Mammogram Images;2024
2. Medical image analysis of masses in mammography using deep learning model for early diagnosis of cancer tissues;Computational Intelligence and Modelling Techniques for Disease Detection in Mammogram Images;2024
3. Patient-specific biomechanical modeling for applications in breast cancer diagnosis and treatment;Biomechanics of the Female Reproductive System: Breast and Pelvic Organs;2023
4. Impact of preoperative magnetic resonance imaging on surgery and eligibility for intraoperative radiotherapy in early breast cancer;PLOS ONE;2022-10-18
5. Breast cancer detection using deep learning: Datasets, methods, and challenges ahead;Computers in Biology and Medicine;2022-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3