Abstract
Abstract
Background
Computational phenotypes are most often combinations of patient billing codes that are highly predictive of disease using electronic health records (EHR). In the case of rare diseases that can only be diagnosed by genetic testing, computational phenotypes identify patient cohorts for genetic testing and possible diagnosis. This article details the validation of a computational phenotype for PTEN hamartoma tumor syndrome (PHTS) against the EHR of patients at three collaborating clinical research centers: Boston Children's Hospital, Children's National Hospital, and the University of Washington.
Methods
A combination of billing codes from the International Classification of Diseases versions 9 and 10 (ICD-9 and ICD-10) for diagnostic criteria postulated by a research team at Cleveland Clinic was used to identify patient cohorts for genetic testing from the clinical data warehouses at the three research centers. Subsequently, the EHR—including billing codes, clinical notes, and genetic reports—of these patients were reviewed by clinical experts to identify patients with PHTS.
Results
The PTEN genetic testing yield of the computational phenotype, the number of patients who needed to be genetically tested for incidence of pathogenic PTEN gene variants, ranged from 82 to 94% at the three centers.
Conclusions
Computational phenotypes have the potential to enable the timely and accurate diagnosis of rare genetic diseases such as PHTS by identifying patient cohorts for genetic sequencing and testing.
Funder
National Institutes of Health
National Center for Advancing Translational Sciences
Publisher
Springer Science and Business Media LLC
Subject
Cognitive Neuroscience,Neurology (clinical),Pathology and Forensic Medicine,Pediatrics, Perinatology and Child Health
Reference39 articles.
1. Kirby JC, Speltz P, Rasmussen LV, et al. PheKB: a catalog and workflow for creating electronic phenotype algorithms for transportability. J Am Med Inform Assoc. 2016;23:1046–52.
2. Che Z, Kale D, Li W, Taha Bahadori M, Liu Y. Deep computational phenotyping. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. https://doi.org/10.1145/2783258.2783365.
3. Pathak J, Wang J, Kashyap S, Basford M, Li R, Masys DR, et al. Mapping clinical phenotype data elements to standardized metadata repositories and controlled terminologies: the eMERGE Network experience. J Am Med Inform Assoc. 2011;18:376–86.
4. Conway M, Berg RL, Carrell D, et al. Analyzing the heterogeneity and complexity of electronic health record oriented phenotyping algorithms. AMIA Annu Symp Proc. 2011;2011:274–83.
5. Newton KM, Peissig PL, Kho AN, et al. Validation of electronic medical record-based phenotyping algorithms: results and lessons learned from the eMERGE network. J Am Med Inform Assoc. 2013;20:e147–54.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献