Functional characterization of rare NRXN1 variants identified in autism spectrum disorders and schizophrenia

Author:

Ishizuka Kanako,Yoshida Tomoyuki,Kawabata Takeshi,Imai Ayako,Mori Hisashi,Kimura Hiroki,Inada Toshiya,Okahisa Yuko,Egawa Jun,Usami Masahide,Kushima Itaru,Morikawa Mako,Okada Takashi,Ikeda Masashi,Branko Aleksic,Mori DaisukeORCID,Someya Toshiyuki,Iwata Nakao,Ozaki Norio

Abstract

Abstract Background Rare genetic variants contribute to the etiology of both autism spectrum disorder (ASD) and schizophrenia (SCZ). Most genetic studies limit their focus to likely gene-disrupting mutations because they are relatively easier to interpret their effects on the gene product. Interpretation of missense variants is also informative to some pathophysiological mechanisms of these neurodevelopmental disorders; however, their contribution has not been elucidated because of relatively small effects. Therefore, we characterized missense variants detected in NRXN1, a well-known neurodevelopmental disease-causing gene, from individuals with ASD and SCZ. Methods To discover rare variants with large effect size and to evaluate their role in the shared etiopathophysiology of ASD and SCZ, we sequenced NRXN1 coding exons with a sample comprising 562 Japanese ASD and SCZ patients, followed by a genetic association analysis in 4273 unrelated individuals. Impact of each missense variant detected here on cell surface expression, interaction with NLGN1, and synaptogenic activity was analyzed using an in vitro functional assay and in silico three-dimensional (3D) structural modeling. Results Through mutation screening, we regarded three ultra-rare missense variants (T737M, D772G, and R856W), all of which affected the LNS4 domain of NRXN1α isoform, as disease-associated variants. Diagnosis of individuals with T737M, D772G, and R856W was 1ASD and 1SCZ, 1ASD, and 1SCZ, respectively. We observed the following phenotypic and functional burden caused by each variant. (i) D772G and R856W carriers had more serious social disabilities than T737M carriers. (ii) In vitro assay showed reduced cell surface expression of NRXN1α by D772G and R856W mutations. In vitro functional analysis showed decreased NRXN1α-NLGN1 interaction of T737M and D772G mutants. (iii) In silico 3D structural modeling indicated that T737M and D772G mutations could destabilize the rod-shaped structure of LNS2-LNS5 domains, and D772G and R856W could disturb N-glycan conformations for the transport signal. Conclusions The combined data suggest that missense variants in NRXN1 could be associated with phenotypes of neurodevelopmental disorders beyond the diagnosis of ASD and/or SCZ.

Funder

Japan Society for the Promotion of Science

Japan Agency for Medical Research and Development

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience,Neurology (clinical),Pathology and Forensic Medicine,Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3