Abstract
Abstract
Background
Osteoarthritis (OA) is defined as a degenerative disease. Pivotal roles of long non-coding RNA (lncRNAs) in OA are widely elucidated. Herein, we intend to explore the function and molecular mechanism of lncRNA KCNQ1OT1 in CHON-001 cells.
Methods
Relative expression of KCNQ1OT1, miR-126-5p and TRPS1 was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability was examined by MTT assay. The migratory ability of chondrocytes was assessed by transwell assay. Western blot was used to determine relative protein expression of collagen II, MMP13 and TRPS1. Dual-luciferase reporter (DLR) assay was applied to test the target of lncRNA KCNQ1OT1 or miR-126-5p.
Results
Relative expression of KCNQ1OT1 and TRPS1 was reduced, whereas miR-126-5p was augmented in cartilage tissues of post-traumatic OA patients compared to those of subjects without post-traumatic OA. Increased KCNQ1OT1 or decreased miR-126-5p enhanced cell viability and migration, and repressed extracellular matrix (ECM) degradation in CHON-001 cells. MiR-126-5p was the downstream target of KCNQ1OT1, and it could directly target TRPS1. There was an inverse correlation between KCNQ1OT1 and miR-126-5p or between miR-126-5p and TRPS1. Meantime, there was a positive correlation between KCNQ1OT1 and TRPS1. The promoting impacts of KCNQ1OT1 on cell viability and migration as well as the suppressive impact of KCNQ1OT1 on ECM degradation were partially abolished by miR-126-5p overexpression or TRPS1 knockdown in CHON-001 cells.
Conclusions
Overexpression of KCNQ1OT1 attenuates the development of OA by sponging miR-126-5p to target TRPS1. Our findings may provide a possible therapeutic strategy for human OA in clinic.
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献