Abstract
Abstract
Introduction
The relationship between humidity and systemic lupus erythematosus (SLE) has yielded inconsistent results in prior research, while the effects of humidity on lupus in animal experiments and its underlying mechanism remain inadequately explored.
Methods
The present study aimed to investigate the impact of high humidity (80 ± 5%) on lupus using female and male MRL/lpr mice, with a particular focus on elucidating the role of gut microbiota in this process. To this end, fecal microbiota transplantation (FMT) was employed to transfer the gut microbiota of MRL/lpr mice under high humidity to blank MRL/lpr mice under normal humidity (50 ± 5%), allowing for an assessment of the effect of FMT on lupus.
Results
The study revealed that high humidity exacerbated lupus indices (serum anti-dsDNA, ANA, IL-6, and IFN- g, and renal pathology) in female MRL/lpr mice but had no significant effect on male MRL/lpr mice. The aggravation of lupus caused by high humidity may be attributed to the increased abundances of the Rikenella, Romboutsia, Turicibacter, and Escherichia-Shigella genera in female MRL/lpr mice. Furthermore, FMT also exacerbated lupus in female MRL/lpr mice but not in male MRL/lpr mice.
Conclusion
In summary, this study has demonstrated that high humidity exacerbated lupus by modulating gut microbiota in female MRL/lpr mice. The findings underscore the importance of considering environmental factors and gut microbiota in the development and progression of lupus, particularly among female patients.
Funder
Zhejiang Province Traditional Chinese Medicine Science and technology Project
Publisher
Springer Science and Business Media LLC
Reference45 articles.
1. Catalina MD, Owen KA, Labonte AC, Grammer AC, Lipsky PE. The pathogenesis of systemic lupus erythematosus: harnessing big data to understand the molecular basis of lupus. J Autoimmun. 2020;110:102359.
2. Tsokos GC. Autoimmunity and organ damage in systemic lupus erythematosus. Nat Immunol. 2020;21:605–14.
3. Pan Q, Chen J, Guo L, Lu X, Liao S, Zhao C, Wang S, Liu H. Mechanistic insights into environmental and genetic risk factors for systemic lupus erythematosus. Am J Transl Res. 2019;11:1241.
4. Bush T. Potential adverse health consequences of climate change related to rheumatic diseases. J Clim Change Health. 2021;3:100029.
5. Rorie A, Poole JA. The role of extreme weather and climate-related events on asthma outcomes. Immunol Allergy Clin. 2021;41:73–84.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献