A multi-Task Learning based applicable AI model simultaneously predicts stage, histology, grade and LNM for cervical cancer before surgery

Author:

Wang Zhixiang,Gao Huiqiao,Wang Xinghao,Grzegorzek Marcin,Li Jinfeng,Sun Hengzi,Ma Yidi,Zhang Xuefang,Zhang Zhen,Dekker Andre,Traverso Alberto,Zhang Zhenyu,Qian Linxue,Xiao Meizhu,Feng Ying

Abstract

Abstract Purpose To build an Mult-Task Learning (MTL) based Artificial Intelligence(AI) model that can simultaneously predict clinical stage, histology, grade and LNM for cervical cancer before surgery. Methods This retrospective and prospective cohort study was conducted from January 2001 to March 2014 for the training set and from January 2018 to November 2021 for the validation set at Beijing Chaoyang Hospital, Capital Medical University. Preoperative clinical information of cervical cancer patients was used. An Artificial Neural Network (ANN) algorithm was used to build the MTL-based AI model. Accuracy and weighted F1 scores were calculated as evaluation indicators. The performance of the MTL model was compared with Single-Task Learning (STL) models. Additionally, a Turing test was performed by 20 gynecologists and compared with this AI model. Results A total of 223 cervical cancer cases were retrospectively enrolled into the training set, and 58 cases were prospectively collected as independent validation set. The accuracy of this cervical cancer AI model constructed with ANN algorithm in predicting stage, histology, grade and LNM were 75%, 95%, 86% and 76%, respectively. And the corresponding weighted F1 score were 70%, 94%, 86%, and 76%, respectively. The average time consumption of AI simultaneously predicting stage, histology, grade and LNM for cervical cancer was 0.01s (95%CI: 0.01–0.01) per 20 patients. The mean time consumption doctor and doctor with AI were 581.1s (95%CI: 300.0-900.0) per 20 patients and 534.8s (95%CI: 255.0-720.0) per 20 patients, respectively. Except for LNM, both the accuracy and F-score of the AI model were significantly better than STL AI, doctors and AI-assisted doctors in predicting stage, grade and histology. (P < 0.05) The time consumption of AI was significantly less than that of doctors’ prediction and AI-assisted doctors’ results. (P < 0.05 Conclusion A multi-task learning AI model can simultaneously predict stage, histology, grade, and LNM for cervical cancer preoperatively with minimal time consumption. To improve the conditions and use of the beneficiaries, the model should be integrated into routine clinical workflows, offering a decision-support tool for gynecologists. Future studies should focus on refining the model for broader clinical applications, increasing the diversity of the training datasets, and enhancing its adaptability to various clinical settings. Additionally, continuous feedback from clinical practice should be incorporated to ensure the model’s accuracy and reliability, ultimately improving personalized patient care and treatment outcomes.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3