Development of a machine learning-based model for predicting positive margins in high-grade squamous intraepithelial lesion (HSIL) treatment by Cold Knife Conization(CKC): a single-center retrospective study

Author:

Zhang Lin,Zheng Yahong,Lei Lingyu,Zhang Xufeng,Yang Jing,Zeng Yong,Chen Keming

Abstract

Abstract Objectives This study aims to analyze factors associated with positive surgical margins following cold knife conization (CKC) in patients with cervical high-grade squamous intraepithelial lesion (HSIL) and to develop a machine-learning-based risk prediction model. Method We conducted a retrospective analysis of 3,343 patients who underwent CKC for HSIL at our institution. Logistic regression was employed to examine the relationship between demographic and pathological characteristics and the occurrence of positive surgical margins. Various machine learning methods were then applied to construct and evaluate the performance of the risk prediction model. Results The overall rate of positive surgical margins was 12.9%. Independent risk factors identified included glandular involvement (OR = 1.716, 95% CI: 1.345–2.189), transformation zone III (OR = 2.838, 95% CI: 2.258–3.568), HPV16/18 infection (OR = 2.863, 95% CI: 2.247–3.648), multiple HR-HPV infections (OR = 1.930, 95% CI: 1.537–2.425), TCT ≥ ASC-H (OR = 3.251, 95% CI: 2.584–4.091), and lesions covering ≥ 3 quadrants (OR = 3.264, 95% CI: 2.593–4.110). Logistic regression demonstrated the best prediction performance, with an accuracy of 74.7%, sensitivity of 76.7%, specificity of 74.4%, and AUC of 0.826. Conclusion Independent risk factors for positive margins after CKC include HPV16/18 infection, multiple HR-HPV infections, glandular involvement, extensive lesion coverage, high TCT grades, and involvement of transformation zone III. The logistic regression model provides a robust and clinically valuable tool for predicting the risk of positive margins, guiding clinical decisions and patient management post-CKC.

Funder

Jingzhou city science and technology guidance project

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3