Author:
Mamo Daniel Niguse,Gebremariam Yosef Haile,Adem Jibril Beshir,Kebede Shimels Derso,Walle Agmasie Damtew
Abstract
Abstract
Background
An unintended pregnancy is a pregnancy that is either unwanted or mistimed, such as when it occurs earlier than desired. It is one of the most important issues the public health system is currently facing, and it comes at a significant cost to society both economically and socially. The burden of an undesired pregnancy still weighs heavily on Ethiopia. The purpose of this study was to assess the effectiveness of machine learning algorithms in predicting unintended pregnancy in Ethiopia and to identify the key predictors.
Method
Machine learning techniques were used in the study to analyze secondary data from the 2016 Ethiopian Demographic and Health Survey. To predict and identify significant determinants of unintended pregnancy using Python software, six machine-learning algorithms were applied to a total sample of 7193 women. The top unplanned pregnancy predictors were chosen using the feature importance technique. The effectiveness of such models was evaluated using sensitivity, specificity, accuracy, and area under the curve.
Result
The ExtraTrees classifier was chosen as the top machine learning model after various performance evaluations. The region, the ideal number of children, religion, wealth index, age at first sex, husband education, refusal sex, total births, age at first birth, and mother’s educational status are identified as contributing factors in that predict unintended pregnancy.
Conclusion
The ExtraTrees machine learning model has a better predictive performance for identifying predictors of unintended pregnancies among the chosen algorithms and could improve with better policy decision-making in this area. Using these important features to help direct appropriate policy can significantly increase the chances of mother survival.
Publisher
Springer Science and Business Media LLC
Reference46 articles.
1. Control Cod. Reproductive health: Unintended Pregnancy. 2022. Accessed on 10/3/2023. Available from: https://www.cdc.gov/reproductivehealth/contraception/unintendedpregnancy/index.htm.
2. Organisation WH. Fat sheet: Abortion 2021. Accessed on 10/3/2023. Available from: https://www.who.int/news-room/fact-sheets/detail/abortion.
3. Bearak J, Popinchalk A, Ganatra B, Moller A-B, Tunçalp Ö, Beavin C, et al. Unintended pregnancy and abortion by income, region, and the legal status of abortion: estimates from a comprehensive model for 1990–2019. The Lancet Global Health. 2020;8(9):e1152–e61.
4. Central Statistical Agency - CSA/, Ethiopia ICF. Ethiopia Demographic and Health Survey 2016. Addis Ababa, Ethiopia: CSA and ICF; 2017. Available from: http://dhsprogram.com/pubs/pdf/FR328/FR328.pdf.
5. Nikonovas T, Spessa A, Doerr SH, Clay GD, Mezbahuddin S. Near-complete loss of fire-resistant primary tropical forest cover in Sumatra and Kalimantan. Commun Earth Environ. 2020;1(1):65.