Roles of increased NUCKS1 expression in endometriosis

Author:

Li Bo,Chen Bocen,Wang Xiaoli,Xiao Man,Zhang Kan,Ye Wenjiao,Zhao Da,Wang Xiaohua,Yu Yan,Li Jun,Xu Xun,Zhang Wenhui,Zhang Yanhua

Abstract

Abstract Background Endometriosis is still a difficult problem for women. The Nuclear Ubiquitous Casein and cyclin-dependent Kinase Substrate 1 (NUCKS1) gene is located on human chromosome 1q32.1. It encodes the NUCKS1 protein, a 27 kDa nuclear DNA binding protein that plays an important role in cell growth and proliferation. NUCKS1 plays an important role in the development of many diseases. However, its role in endometriosis is unclear. Methods Ectopic endometrial tissues and normal tissue specimens were collected, and the expression of NUCKS1, NF-κB and PI3K was detected by RT-qPCR and immunohistochemistry. Inhibition of NUCKS1 in hEM15A cells, study the changes in cell viability, apoptosis, migration and protein expression by CCK8 assay, flow cytometry, wound-healing assay, western blot and ELISA techniques. The comparison of differences between the two groups was implemented using unpaired sample t test or Mann-whitney U test. One-way analysis of variance or Kruskal-wallis test was used for comparisons among the three groups. Results (1) NUCKS1 is highly expressed in endometriosis tissues. (2) Inhibition of NUCKS1 decreases cell viability and capability of migration, and increases apoptosis in endometriosis cells. (3) Expressions of NF-κB and PI3K are increased in endometriosis tissues, and inhibition of NUCKS1 decreases the expression levels of PI3K and NF-κB in endometriosis cells. (4) Inhibition of NUCKS1 decreases the expression of VEGF. Conclusion (1) NUCKS1 is overexpressed in endometriosis, and inhibition of NUCKS1 inhibits cell viability and capability of migration, and increases apoptosis. (2) NUCKS1 promotes the progress of endometriosis through activating PI3K and NF-κB pathways, and VEFG is also involved in this process.

Funder

Hainan Province Clinical Medical Center

High-level talent programs of Natural Science Foundation of Hainan province

Publisher

Springer Science and Business Media LLC

Subject

Obstetrics and Gynecology,Reproductive Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3