Identification of genes and pathways associated with menopausal status in breast cancer patients using two algorithms

Author:

Cheng Minzhang,Wang Lingchen,Xuan Yanlu,Zhai Zhenyu

Abstract

Abstract Background Menopausal status has a known relationship with the levels of estrogen, progesterone, and other sex hormones, potentially influencing the activity of ER, PR, and many other signaling pathways involved in the initiation and progression of breast cancer. However, the differences between premenopausal and postmenopausal breast cancer patients at the molecular level are unclear. Methods We retrieved eight datasets from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) associated with menopausal status in breast cancer patients were identified using the MAMA and LIMMA methods. Based on these validated DEGs, we performed Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Protein–protein interaction (PPI) networks were constructed. We used DrugBank data to investigate which of these validated DEGs are targetable. Survival analysis was performed to explore the influence of these genes on breast cancer patient prognosis. Results We identified 762 DEGs associated with menopausal status in breast cancer patients. PPI network analysis indicated that these genes are primarily involved in pathways such as the cell cycle, oocyte meiosis and progesterone-mediated oocyte maturation pathways. Notably, several genes played roles in multiple signaling pathways and were associated with patient survival. These genes were also observed to be targetable according to the DrugBank database. Conclusion We identified DEGs associated with menopausal status in breast cancer patients. The association of these genes with several key pathways may promote understanding of the complex characterizations of breast cancer. Our findings offer valuable insights for developing new therapeutic strategies tailored to the menopausal status of breast cancer patients.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3