Comparison of serum metabolomics in women with breast Cancer Prior to Chemotherapy and at 1 year: cardiometabolic implications

Author:

Lyon Debra E.,Yao Yingwei,Garrett Timothy,Kelly Debra Lynch,Cousin Lakeshia,Archer Kellie J.

Abstract

Abstract Objective Early-stage breast cancer (BC) is the second most common malignancy in women, worldwide. Early-detection and treatment advances have led to 5-year survival rates of 90% for early-stage breast cancer. However, the long-term morbidity of breast cancer remains high, with a majority of survivors facing increased risk of cardiometabolic conditions as well as secondary cancers. In particular, African American women with breast cancer experience higher morbidity and mortality than other women. Metabolomics is the comprehensive study of metabolites in biological samples to elucidate the role of monosaccharides, amino acids, and their respective metabolic pathways. Although some studies have found differential metabolites in women with breast cancer compared to normal controls, there has been little study of women with breast cancer across time and the active treatment trajectory. This study examines and compares the serum metabolomic profile of women with BC, prior to initial chemotherapy and at 1 year after inception of chemotherapy. Methods This study examined serum metabolites through a secondary analysis of a longitudinal parent study (EPIGEN) of women diagnosed with early-stage BC. Participants were evaluated across 5 time points: prior to their receipt of chemotherapy (T1), at the time of their 4th chemotherapy treatment (T2), 6 months after the initiation of chemotherapy (T3), one year after the initiation of chemotherapy (T4) and two years after the initiation of chemotherapy (T5). This analysis focused on the metabolomic data from 70 participants from T1 to T4. Using ultra high-pressure liquid chromatography high resolution mass spectrometry (UHPLC-HRMS), we performed Friedman Rank Sum Test followed by Nemenyi post-hoc pairwise tests to identify which metabolite levels differed between time points, focusing on metabolites with a Benjamini-Hochberg false discovery rate (FDR) from the overall Friedman test < 0.05 and then specifically examined the p-values from the T1 vs. T4 pairwise comparison. Results The untargeted serum metabolomics yielded a total of 2,395 metabolites identified on the basis of the accurate mass and MS/MS fragmentation, 1,264 of which were significant after Friedman’s test (FDR < 0.05). The analysis then focused on the levels of 124 metabolites from the T1 vs. T4 post-hoc comparison that had a combined FDR < 0.05 and fold change (FC) > 2.0. Metabolite set enrichment analysis (MSEA) as part of Metaboanalyst 3.0 was performed to identify pathways that were significantly altered. The known metabolites identified from the functional analysis were used to evaluate the up and down regulated pathways. The 40metabolites from the Functional Analysis were mainly attributed to amino acids (specifically lysine regulation), fatty acids (particularly unsaturated) and steroid hormone synthesis (lysophosphatidic acid). Conclusion There were multiple significant changes in the serum metabolomic profile of women with breast cancer at one-year post inception of chemotherapy compared to pre-chemotherapy, most notably associated with lysine degradation, branched-chain amino acid synthesis, linoleic acid metabolism, tyrosine metabolism and biosynthesis of unsaturated fatty acids as the top 5 metabolic pathways. Some of these changes could be associated with metabolic perturbations that are consistent with heightened risk of cardiometabolic morbidity. Our results provide new insights into the mechanisms underlying potential heightened cardiovascular health risks in this population.

Funder

NIH

National Institute of Nursing Research

National Institutes

Publisher

Springer Science and Business Media LLC

Subject

Obstetrics and Gynecology,Reproductive Medicine,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Omics Technologies Improving Breast Cancer Research and Diagnostics;International Journal of Molecular Sciences;2023-08-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3