Software architectures for big data: a systematic literature review

Author:

Avci CigdemORCID,Tekinerdogan Bedir,Athanasiadis Ioannis N.

Abstract

AbstractBig Data systems are often composed of information extraction, preprocessing, processing, ingestion and integration, data analysis, interface and visualization components. Different big data systems will have different requirements and as such apply different architecture design configurations. Hence a proper architecture for the big data system is important to achieve the provided requirements. Yet, although many different concerns in big data systems are addressed the notion of architecture seems to be more implicit. In this paper we aim to discuss the software architectures for big data systems considering architectural concerns of the stakeholders aligned with the quality attributes. A systematic literature review method is followed implementing a multiple-phased study selection process screening the literature in significant journals and conference proceedings.

Publisher

Springer Science and Business Media LLC

Reference34 articles.

1. Gorton I, Klein J. Distribution, data, deployment: software architecture convergence in big data systems. IEEE Softw. 2014;32(3):78–85.

2. Atkins D, Best D, Briss PA, Eccles M, Falck-Ytter Y, Flottorp S, et al. Grading quality of evidence and strength of recommendations. BMJ. 2004;328(7454):1490. https://doi.org/10.1136/bmj.328.7454.1490.

3. Angelow S, Grefen P, Greefhorst D. A classification of software reference architectures: analyzing their success and effectiveness. In: Joint working IEEE/IFIP conference on Software Architecture & European Conference on software architecture; 2009. p. 141–50.

4. Gölzer P, Cato P, Amberg M. Data Processing Re- quirements of Industry 4.0 - Use Cases for Big Data Ap- plications. In: Proceedings of the 23th European Confer- ence on Information Systems (ECIS), paper 61; 2015.

5. Tan et al., 2015 C. Tan, L. Sun, K. Liu Big data architecture for pervasive healthcare: a literature review Proceedings of the Twenty-Third European Conference on Information Systems, Münster, Germany, 2015:26–29.

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3