Congruences for Taylor expansions of quantum modular forms

Author:

Guerzhoy Pavel,Kent Zachary A,Rolen Larry

Abstract

Abstract Recently, a beautiful paper of Andrews and Sellers has established linear congruences for the Fishburn numbers modulo an infinite set of primes. Since then, a number of authors have proven refined results, for example, extending all of these congruences to arbitrary powers of the primes involved. Here, we take a different perspective and explain the general theory of such congruences in the context of an important class of quantum modular forms. As one example, we obtain an infinite series of combinatorial sequences connected to the ‘half-derivatives’ of the Andrews-Gordon functions and with Kashaev’s invariant on (2m+1,2) torus knots, and we prove conditions under which the sequences satisfy linear congruences modulo at least 50% of primes.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Mathematics (miscellaneous),Theoretical Computer Science

Reference40 articles.

1. Ahlgren, S, Kim, B: Dissections of a “strange” function. Int. J. Number Theory (2014). in press.

2. Andrews G, Dyson F, Hickerson D: Partitions and indefinite quadratic forms. Invent. Math 1988,91(3):391–407. 10.1007/BF01388778

3. Andrews G, Jelínek V: Some q -series identities related to interval orders. European J. Combin 2014, 39: 178–187. 10.1016/j.ejc.2014.01.003

4. Andrews, G, Sellers, J: Congruences for the Fishburn numbers. J. Number Theory (2014). in press.

5. Bajpai, J, Kimport, S, Liang, J, Ma, D, Ricci, J: Bilateral series and Ramanujan’s radial limits. Proc. Amer. Math. Soc (2014). in press.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Asymptotics and sign patterns for coefficients in expansions of Habiro elements;Mathematische Zeitschrift;2023-07-10

2. BAILEY PAIRS AND STRANGE IDENTITIES;J KOREAN MATH SOC;2022

3. The colored Jones polynomial and Kontsevich–Zagier series for double twist knots;Journal of Knot Theory and Its Ramifications;2021-04

4. Generalized Fishburn numbers and torus knots;Journal of Combinatorial Theory, Series A;2021-02

5. Dissections of Strange q-Series;Annals of Combinatorics;2019-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3