Integrating criticality concepts into road network disruption assessments for volcanic eruptions

Author:

Hayes Josh L.,Biass Sébastien,Jenkins Susanna F.,Meredith Elinor S.,Williams George T.

Abstract

AbstractRoad networks in volcanically active regions can be exposed to various volcanic hazards from multiple volcanoes. Exposure assessments are often used in these environments to prioritise risk management and mitigation efforts towards volcanoes or hazards that present the greatest threat. Typically, road exposure has been assessed by quantifying the amount of road network affected by different hazards and/or hazard intensity. Whilst this approach is computationally efficient, it largely fails to consider the relative importance of road segments within the network (i.e., road criticality). However, road criticality is an important indicator of the disruption that may be caused by an eruption. In this work, we aim to integrate road criticality concepts to enhance typical volcanic eruption road exposure assessments into road disruption assessments. We use three key components to quantify disruption: a) road criticality, b) impact severity, and c) affected road quantity. Two case study eruptions: Merapi 2010 and Kelud 2014, both in Java, Indonesia, are used to demonstrate the usefulness of integrating road criticality into road disruption assessments from volcanic eruptions. We found that disruption of the road network from the Kelud 2014 case study was an order of magnitude greater than the Merapi 2010 case study. This is primarily driven by the more widely dispersed tephra fall from the Kelud 2014 event, which affected nearly 28% of Java’s road network length, compared to Merapi 2010, which affected 1.5%. We also identified potential disruption hotspots that were affected by both of these case study eruptions. At Merapi, roads that carry traffic directly away from the summit, those that cross major valleys, and the major Yogyakarta-Magelang highway were key disruption hotspots, which has implications for moving large volumes of traffic efficiently, such as in an evacuation. The Kelud case study highlighted the potential impacts of widespread tephra falls on socio-economic activity and connectivity of large urban centres. Our approach has been designed such that it can be applied entirely using open-sourced datasets. Therefore, the approach to integrating road criticality in this paper can be used, applied, and adapted to assess road network disruption at any volcano in the world. 

Funder

National Research Foundation Singapore

AXA Joint Research Initiative

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Safety Research,Geophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3