Impact of volcanic ash from Cotopaxi-2015 and Tungurahua-2016 eruptions on the dielectric characteristics of suspension insulators, Ecuador

Author:

Ramírez Juan,Vasconez Francisco J.,López Alex,Valencia Fausto,Quilumba Franklin,Vásconez Müller Anais,Hidalgo Silvana,Bernard Benjamin

Abstract

AbstractIn Ecuador, a country with several active volcanoes and with four eruptions in the last decade in the continental arc, it is very likely that high-voltage transmission lines cross volcanic hazard zones on their routes. Here, we quantify the impact of fresh volcanic ash from the hydromagmatic Cotopaxi-2015 and the magmatic Tungurahua-2016 eruptions on the dielectric characteristics of ANSI 52–3 suspension insulators made of porcelain and glass, under moist conditions. The experiments include two methodologies to measure the performance of the insulators in real-time: the minimum insulator flashover voltage (FOVmin) and the dielectric loss factor angle. Both allow quantifying i) the critical voltage that the insulators can withstand prior to flashover occurrence and, ii) the strong fluctuating behavior that the insulators undergo in an ashy environment. Based on six contamination scenarios, we found that there is a higher chance of flashover if the insulators are completely blanketed (top and bottom) even with a fine ash layer (1 mm), than if they are covered just at the top. Our results further show that the ash of Cotopaxi-2015 eruption has a higher chance of leading to insulator failure because of its higher conductivity (i.e. higher leachate content) than that of Tungurahua-2016. Additionally, we identify two critical voltages prior to electrical flashover on the insulators of 28.25 kV and 17.01 kV for the 230 kV and 138 kV Ecuadorian transmission lines, respectively. Finally, we present a simple impact evaluation for the main Ecuadorian transmission lines based on the outcomes of this research and the official volcanic hazard maps for Cotopaxi and Tungurahua volcanoes.

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Safety Research,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3