In-situ monitoring of 3He/4He in summit gases of Kilauea Volcano (Hawaii) prior to the 2020 eruption

Author:

McMurtry Gary M.,Dasilveira Luis A.

Abstract

AbstractWe present He isotope (3He/4He) data from a fumarole and near-ground gases measured in-situ at the Sulfur Banks solfatara field at the summit of Kilauea Volcano, Hawaii. We used a field-deployable mass-spectrometer-based system: the Helium Isotope Monitor (HIM) previously described in McMurtry et al. (2019a, b). The in-situ instrument was deployed using solar power for the first time and results were ground-truthed against data determined using conventional gas analytical and noble gas mass spectrometry techniques. The HIM instrumentation, associated Vent Gas Purification System (VGPS), and related sampling equipment and strategy are described. Cloudy and rainy weather conditions hampered the deployment, which was reorganized to reduce power loads and resulted in less sampling than planned. Nevertheless, we obtained daily sampling of the volcanic vent gas. Results from the Old Well fumarole indicate a ~ 2 RA increase in 3He/4He on the day of the December 20th, 2020 eruption of nearby Halema‘uma‘u Crater, reaching 17.0 RA using the in-situ instrument and 16.0 ± 0.67 RA using conventional techniques. This finding suggests that a new 3He-enriched magma source is driving the current, ongoing eruption phase of Kilauea and, if so, confirms that the deep summit caldera fault system that hosts the Sulfur Banks field is connected to the Halema‘uma‘u Crater magmatic system. Overall, these findings illustrate how time-series helium isotope data, which are well established by ongoing discrete monitoring at low temporal resolution, can help forecast forthcoming eruptive events that may not be foreseen by other volcanic monitoring methods.

Funder

U.S. Geological Survey

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Safety Research,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3