Cost-benefit analysis for evacuation decision-support: challenges and possible solutions for applications in areas of distributed volcanism

Author:

Wild Alec J.,Bebbington M. S.,Lindsay J. M.,Deligne N. I.

Abstract

AbstractDuring a volcanic crisis, evacuation is the most effective mitigation measure to preserve life. However, the decision to call an evacuation is typically complex and challenging, in part due to uncertainties related to the behaviour of the volcano. Cost-benefit analysis (CBA) can support decision-makers: this approach compares the cost of evacuating versus the expected loss from not evacuating, expressed as a ‘break-even’ probability of fatality. Here we combine CBA with a Bayesian Event Tree for Short-term Volcanic Hazard (BET_VHst) to create an evacuation decision-support tool to identify locations that are cost-beneficial to evacuate in the event of volcanic unrest within a distributed volcanic field. We test this approach with the monogenetic Auckland Volcanic Field (AVF), situated beneath the city of Auckland, New Zealand. We develop a BET_VHst for the AVF, extending a recently revised Bayesian Event Tree for Eruption Forecasting (BET_EF) to consider the eruptive style, phenomena produced, and the impact exceedance probability as a function of distance. The output of the BET_VHst is a probability of volcanic hazard impact at a given location. Furthermore, we propose amending the weight of the monitoring component within the BET_VHst framework to a transitional parameter, addressing limitations identified in a previous study. We examine how three possible transitional monitoring component weights affect the spatial vent likelihood and subsequent BET_VHst outputs, compared to the current default weight. For the CBA, we investigate four thresholds, based on two evacuation durations and two different estimates for the value of life that determine the cost of not evacuating. The combinations of CBA and BET_VHst are tested using a synthetic unrest dataset to define an evacuation area for each day. While suitable evacuation areas were identified, there are further considerations required before such an approach can be applied operationally to support crisis management.

Funder

DEVORA

Resilience to Nature’s Challenges Volcano Programme

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Safety Research,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3