Effect of recycled vegetable oil on the performance of nanomarl-modified asphalt mixtures

Author:

Usanga Idorenyin NdarakeORCID,Okafor Fidelis Onyebuchi,Ikeagwuani Chijioke ChristopherORCID

Abstract

AbstractIn response to the demand for a greener approach to pavement infrastructure and the economic benefits associated with alternative materials, the modification of neat binders has been a consistent focus. This research aimed to enhance the characteristics of asphalt binders and mixtures by incorporating recycled vegetable oil (RVO) and nanomarl. RVO was added to 60/70 penetration bitumen at concentrations of 1%, 3%, and 5% by weight, while nanomarl was kept constant at 5% by weight of the bitumen. Various physical, rheological, and microstructural properties of the modified binders were evaluated, including penetration, softening point, viscosity, rutting resistance, fatigue resistance, creep, stiffness, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). Furthermore, the moisture susceptibility and rutting resistance performance of asphalt mixtures incorporating these modified binders were investigated through analyses of tensile strength ratio and Hamburg wheel tracking. The test results revealed that the incorporation of RVO in bitumen led to a gradual increase in the penetration value of the modified bitumen. Simultaneously, the softening point and viscosity of the modified bitumen decreased, indicating that the addition of oil rendered the modified bitumen softer. However, the inclusion of nanomarl in RVO-modified bitumen improved its viscoelastic behavior and positively influenced its rheological properties under both unaged and aged conditions. Specifically, the addition of 5% nanomarl resulted in reduced penetration value, increased softening point, viscosity, rutting resistance, fatigue resistance, creep stiffness, and improved relaxation behavior at low temperatures. The most favorable outcomes were observed when incorporating 1% RVO with 5% nanomarl. Moreover, SEM and FTIR analysis demonstrated successful blending of the additives into the bitumen, without any evidence of phase separation. This indicates a homogeneous distribution of the additives within the bitumen matrix.Practical application: The modification of bitumen with waste or recycled oils for the production of asphalt mixture has been successfully studied in numerous researches. However, this study introduces a novel approach by synergistically combining recycled vegetable oil (RVO) modification with the incorporation of nanomarl particles into asphalt mixture. The innovation aspect lies in the integration of two sustainable and environmentally friendly components, RVO and nanomral, to enhance asphalt performance. The findings offer a blueprint for incorporating sustainable materials and approaches in road construction projects. Pavement engineers can adopt the use of RVO modification and nanomarl particles to create longer-lasting and environmentally friendly asphalt pavements. In regions with challenging climatic conditions, the use of this modified asphalt can lead to improved infrastructure resilience. Roads built with these materials can better withstand temperature fluctuations. The integration of RVO and nanomarl particles offers improved performance, cost-effectiveness, reduced environmental impact, and also opens avenue for further exploration and optimization of asphalt mixtures incorporating innovative additives.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3