Permafrost thaw and ground settlement considering long-term climate impact in northern Alaska

Author:

Yang Zhaohui JoeyORCID,Lee Kannon C.,Liu Haibo

Abstract

AbstractAlaska’s North Slope is predicted to experience twice the warming expected globally. When summers are longer and winters are shortened, ground surface conditions in the Arctic are expected to change considerably. This is significant for Arctic Alaska, a region that supports surface infrastructure such as energy extraction and transport assets (pipelines), buildings, roadways, and bridges. Climatic change at the ground surface has been shown to impact soil layers beneath through the harmonic fluctuation of the active layer, and warmer air temperature can result in progressive permafrost thaw, leading to a deeper active layer. This study attempts to assess climate change based on the climate model data from the fifth phase of the Coupled Model Intercomparison Project and its impact on a permafrost environment in Northern Alaska. The predicted air temperature data are analyzed to evaluate how the freezing and thawing indices will change due to climate warming. A thermal model was developed that incorporated a ground surface condition defined by either undisturbed intact tundra or a gravel fill surface and applied climate model predicted air temperatures. Results indicate similar fluctuation in active layer thickness and values that fall within the range of minimum and maximum readings for the last quarter-century. It is found that the active layer thickness increases, with the amount depending on climate model predictions and ground surface conditions. These variations in active layer thickness are then analyzed by considering the near-surface frozen soil ice content. Analysis of results indicates that thaw strain is most significant in the near-surface layers, indicating that settlement would be concurrent with annual thaw penetration. Moreover, ice content is a major factor in the settlement prediction. This assessment methodology, after improvement, and the results can help enhance the resilience of the existing and future new infrastructure in a changing Arctic environment.

Funder

ConocoPhillips Arctic Science and Engineering Endowment

Publisher

Springer Science and Business Media LLC

Reference43 articles.

1. Andersland OB, Ladanyi B (2004) Frozen ground engineering, 2nd edn. ASCE Press/Wiley

2. Zhang T, Heginbottom JA, Barry RG, Brown J (2000) Further statistics on the distribution of permafrost and ground ice in the Northern Hemisphere. Polar Geogr 24(2):126–131. https://doi.org/10.1080/10889370009377692

3. Romanovsky VE, Smith S, Yoshikawa K, Brown J (2002) Permafrost temperature records: indicators of climate change. EOS 83(50):589–600. https://doi.org/10.1029/2002EO000402

4. Budiko MI (1980) The climate in the past and future. Hydrometeoizdat 351

5. Vyalov SS, Gerasimov AS, Zolotar AJ (1993) Ensuring structural stability and durability in permafrost ground areas at global warming of the Earth’s climate. Proceedings of the 6th International Conference on Permafrost. South China University of Technology Press, pp 955–960

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3