New directions for reinforced concrete coastal structures

Author:

Nolan StevenORCID,Rossini Marco,Knight Chase,Nanni Antonio

Abstract

AbstractWithin the last century, coastal structures for infrastructure applications have traditionally been constructed with timber, structural steel, and/or steel-reinforced/prestressed concrete. Given asset owners’ desires for increased service-life; reduced maintenance, repair and rehabilitation; liability; resilience; and sustainability, it has become clear that traditional construction materials cannot reliably meet these challenges without periodic and costly intervention. Fiber-Reinforced Polymer (FRP) composites have been successfully utilized for durable bridge applications for several decades, demonstrating their ability to provide reduced maintenance costs, extend service life, and significantly increase design durability. This paper explores a representative sample of these applications, related specifically to internal reinforcement for concrete structures in both passive (RC) and pre-tensioned (PC) applications, and contrasts them with the time-dependent effect and cost of corrosion in transportation infrastructure. Recent development of authoritative design guidelines within the US and international engineering communities is summarized and a examples of RC/PC verses FRP-RC/PC presented to show the sustainable (economic and environmental) advantage of composite structures in the coastal environment.

Publisher

Springer Science and Business Media LLC

Reference102 articles.

1. AASHTO (2020) Guide specification for the service life Design of Highway Bridges. American Association of State Highway and Transportation Officials, Washington, DC

2. Shayan A, Xu A (2016) “Realising 100-year bridge design life in an aggressive environment: review of the literature”, technical report no. In: AP-T313–16, November 2016. Austroads Ltd., Sydney

3. NASEM (2013) Design guide for bridges for service life. National Academies of Sciences, Engineering, and Medicine, Washington, DC: The National Academies Press. https://doi.org/10.17226/22617

4. ASCE (2015) ASCE Grand Challenge. American Society of Civil Engineers, Reston https://www.asce.org/grand-challenge/

5. FHWA (2019a) LTBP InfoBridge. In: Long Term Infrastructure Performance Programs. Federal Highway Administration, Washington, DC https://highways.dot.gov/research/research-programs/infrastructure/long-term-infrastructure-performance

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3