Abstract
AbstractWe proposed a new iterative power and amplitude correction (IPAC) algorithm to simulate nonstationary and non-Gaussian processes. The proposed algorithm is rooted in the concept of defining the stochastic processes in the transform domain, which is elaborated and extend. The algorithm extends the iterative amplitude adjusted Fourier transform algorithm for generating surrogate and the spectral correction algorithm for simulating stationary non-Gaussian process. The IPAC algorithm can be used with different popular transforms, such as the Fourier transform, S-transform, and continuous wavelet transforms. The targets for the simulation are the marginal probability distribution function of the process and the power spectral density function of the process that is defined based on the variables in the transform domain for the adopted transform. The algorithm is versatile and efficient. Its application is illustrated using several numerical examples.
Funder
Natural Sciences and Engineering Research Council of Canada
Chinese Government Scholarship
Publisher
Springer Science and Business Media LLC
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献