Analysis and prediction of pipeline corrosion defects based on data analytics of in-line inspection

Author:

Cui Bingyan,Wang Hao

Abstract

AbstractIn-line inspection (ILI) is important to pipeline integrity management since it can detect pipeline defects and identify potential failure locations through periodical examinations. However, effectively evaluating defects based on ILI data is challenging. Measurements of ILI are easily influenced by instrument performance and maintenance activities, leading to unmatched and imbalanced data. Poor ILI data make it difficult to establish defect growth models based on multiple inspections. This study conducted comprehensive analysis of ILI data for evaluating corrosion defects of a steel pipeline. First, statistical analysis was performed on raw data to visualize distributions of corrosion depths and number of corrosions. Second, hierarchical clustering method was used to classify corrosion severity levels based on features of corrosion depth and estimated repair factor. The interaction effect between adjacent corrosions was considered. Machine learning methods, including k-nearest neighbor, support vector machine, random forest, and light gradient boosting machine were used to explore the relationship between the location parameters of adjacent corrosions and severity levels. Then, maximum corrosion depths and corrosion density were filtered from raw ILI data of multiple inspections, which were critical for pipeline failure prediction. Finally, distribution parameters were fitted to establish stochastic growth models on maximum corrosion depth and corrosion number density. This study presents data analytics based approach to obtain valid information from ILI data in practice.

Funder

Pipeline and Hazardous Materials Safety Administration

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pipeline corrosion prediction and uncertainty analysis with an ensemble Bayesian neural network approach;Process Safety and Environmental Protection;2024-07

2. Automatic extraction and 3D modeling of real road scenes using UAV imagery and deep learning semantic segmentation;International Journal of Digital Earth;2024-06-19

3. AI-based recognition for road distressed from GPR measurement using artificial neural networks;International Conference on Image, Signal Processing, and Pattern Recognition (ISPP 2024);2024-06-13

4. Method for the detection of road bridge pavement crack depth based on acoustic signal analysis;International Conference on Remote Sensing, Surveying, and Mapping (RSSM 2024);2024-06-03

5. Image Recognition of Pavement Cracks in Autonomous Driving Scenarios Based on Deep Learning;2024 5th International Conference on Computer Vision, Image and Deep Learning (CVIDL);2024-04-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3