Author:
Nasr Amro,Honfi Dániel,Larsson Ivanov Oskar
Abstract
AbstractThe impact of climate change on the deterioration of reinforced concrete elements have been frequently highlighted as worthy of investigation. This article addresses this important issue by presenting a time-variant reliability analysis to assess the effect of climate change on four limit states; the probabilities of corrosion initiation, crack initiation, severe cracking, and failure of a simply supported beam built in 2020 and exposed to chloride-induced corrosion. The historical and future climate conditions (as projected by three different emission scenarios) for different climate zones in Sweden are considered, including subarctic conditions where the impact of climate change may lead to large increases in temperature. The probabilities of all limit states are found to be: 1) higher for scenarios with higher GHG emissions and 2) higher for southern than for northern climate zones. However, the end-of-century impact of climate change on the probabilities of reaching the different limit states is found to be higher for northern than for southern climate zones. At 2100, the impact of climate change on the probability of failure can reach up to an increase of 123% for the northernmost zone. It is also noted that the end-of-century impact on the probability of failure is significantly higher (ranging from 3.5–4.9 times higher) than on the other limit states in all climate scenarios.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Developmental Biology,Embryology,Anatomy
Reference69 articles.
1. IPCC (2021) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
2. Nasr A, Björnsson I, Honfi D, Ivanov O L, Johansson J, Kjellström E (2021) A review of the potential impacts of climate change on the safety and performance of bridges, Sustainable and Resilient Infrastructure, 6:3-4, 192-212. https://doi.org/10.1080/23789689.2019.1593003.
3. Kumar P, Imam B (2013) Footprints of air pollution and changing environment on the sustainability of built infrastructure. Sci Total Environ 444:85–101
4. Meyer M (2008) Design standards for U.S. transportation infrastructure: The implications of climate change. Transportation Research Board, Washington
5. Schwartz HG (2010) Adaptation to the impacts of climate change on transportation. Bridge 40(3):5–13
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献