Evaluating the impact of factors in vehicle based pavement sensing implementation: sensor placement, pavement temperature, speed, and threshold

Author:

Zhang Dada,Ho Chun-Hsing,Zhang Fangfang

Abstract

AbstractThe purpose of the paper is to improve the efficiency of vehicle based sensing technology in highway pavement condition assessment by evaluating the effect of four factors (sensor placement, pavement temperature, drive speed, and threshold for pavement distress classification) and providing suggestions to better improve the accuracy of pavement condition detection and minimize the interruption of pavement sensing operation. Two I-10 corridors in the Phoenix region were selected for vibration data collection and data analysis. A series of statistical analyses were performed to determine if each one of the factors has a significant impact on the pavement distress detection. The results of Analysis of Variance (ANOVA) tests and Analysis of Covariance (ANCOVA) tests show that the placement of sensors have a significant effect in the pavement condition assessments. The significant differences occurred in the group of sensors that were placed on the same side of the vehicle, as well as, in either front wheels or rear wheels of the vehicle. The effect of pavement temperature on the vehicle based sensing implementation is significant while the mean drive speed is not seen as a significant factor in the pavement condition survey. The two thresholds were determined to select points of interest (POI; cracks, potholes) for the pavement distress classification and these POIs are in good agreement with international roughness index (IRI) data in an ArcGIS map. The findings of the paper can be used to better improve the computing algorithms of vehicle based sensing techniques.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3