Multiclass anomaly detection in imbalanced structural health monitoring data using convolutional neural network

Author:

Zhao Mengchen,Sadhu Ayan,Capretz Miriam

Abstract

AbstractStructural health monitoring (SHM) system aims to monitor the in-service condition of civil infrastructures, incorporate proactive maintenance, and avoid potential safety risks. An SHM system involves the collection of large amounts of data and data transmission. However, due to the normal aging of sensors, exposure to outdoor weather conditions, accidental incidences, and various operational factors, sensors installed on civil infrastructures can get malfunctioned. A malfunctioned sensor induces significant multiclass anomalies in measured SHM data, requiring robust anomaly detection techniques as an essential data cleaning process. Moreover, civil infrastructure often has imbalanced anomaly data where most of the SHM data remain biased to a certain type of anomalies. This imbalanced time-series data causes significant challenges to the existing anomaly detection methods. Without proper data cleaning processes, the SHM technology does not provide useful insights even if advanced damage diagnostic techniques are applied. This paper proposes a hyperparameter-tuned convolutional neural network (CNN) for multiclass imbalanced anomaly detection (CNN-MIAD) modelling. The hyperparameters of the proposed model are tuned through a random search algorithm to optimize the performance. The effect of balancing the database is considered by augmenting the dataset. The proposed CNN-MIAD model is demonstrated with a multiclass time-series of anomaly data obtained from a real-life cable-stayed bridge under various cases of data imbalances. The study concludes that balancing the database with a time shift window to increase the database has generated the optimum results, with an overall accuracy of 97.74%.

Funder

Western University

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3