Probabilistic analysis of long-term loss incorporating maximum entropy method and analytical higher-order moments

Author:

Zhang Yu,Li Yaohan,Dong You

Abstract

AbstractQuantifying economic losses of civil infrastructures subjected to various hazards under a life-cycle context is of vital importance for risk assessment and management. In previous studies, the expected long-term loss has been widely applied as a standard decision criterion during the life-cycle analysis. However, the expectation may not be informative enough to illustrate uncertainties associated with the long-term loss. Therefore, the higher-order moments and the probability distribution should be investigated. In this paper, a probabilistic analysis framework is proposed to construct the probability density function and cumulative distribution function of long-term loss by assessing the analytical statistical moments. The stochastic renewal process is utilized to assess the long-term loss by considering uncertainties associated with stochastic occurrence and frequency of the hazards. Based on the maximum entropy method, the proposed approach shows superior efficiency to assess the probability distribution of long-term loss than crude Monte Carlo simulation. The probability distribution can be essential information for decision-making process of risk management. An illustrative example is investigated to show the probability density function of long-term loss of civil infrastructure subjected to hurricane hazards. A good agreement of results obtained by the proposed approach and Monte Carlo simulation has verified the accuracy and effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

the Research Grants Council of the Hong Kong Special Administrative Region, China

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3