Proteomic characterization of serine hydrolase activity and composition in normal urine

Author:

Navarrete Mario,Ho Julie,Krokhin Oleg,Ezzati Peyman,Rigatto Claudio,Reslerova Martina,Rush David N,Nickerson Peter,Wilkins John A

Abstract

Abstract Background Serine hydrolases constitute a large enzyme family involved in a diversity of proteolytic and metabolic processes which are essential for many aspects of normal physiology. The roles of serine hydrolases in renal function are largely unknown and monitoring their activity may provide important insights into renal physiology. The goal of this study was to profile urinary serine hydrolases with activity-based protein profiling (ABPP) and to perform an in-depth compositional analysis. Methods Eighteen healthy individuals provided random, mid-stream urine samples. ABPP was performed by reacting urines (n = 18) with a rhodamine-tagged fluorophosphonate probe and visualizing on SDS-PAGE. Active serine hydrolases were isolated with affinity purification and identified on MS-MS. Enzyme activity was confirmed with substrate specific assays. A complementary 2D LC/MS-MS analysis was performed to evaluate the composition of serine hydrolases in urine. Results Enzyme activity was closely, but not exclusively, correlated with protein quantity. Affinity purification and MS/MS identified 13 active serine hydrolases. The epithelial sodium channel (ENaC) and calcium channel (TRPV5) regulators, tissue kallikrein and plasmin were identified in active forms, suggesting a potential role in regulating sodium and calcium reabsorption in a healthy human model. Complement C1r subcomponent-like protein, mannan binding lectin serine protease 2 and myeloblastin (proteinase 3) were also identified in active forms. The in-depth compositional analysis identified 62 serine hydrolases in urine independent of activity state. Conclusions This study identified luminal regulators of electrolyte homeostasis in an active state in the urine, which suggests tissue kallikrein and plasmin may be functionally relevant in healthy individuals. Additional serine hydrolases were identified in an active form that may contribute to regulating innate immunity of the urinary tract. Finally, the optimized ABPP technique in urine demonstrates its feasibility, reproducibility and potential applicability to profiling urinary enzyme activity in different renal physiological and pathophysiological conditions.

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Molecular Biology,Molecular Medicine,Clinical Biochemistry,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3