Quantitative proteomic analysis of amniocytes reveals potentially dysregulated molecular networks in Down syndrome

Author:

Cho Chan-Kyung J,Drabovich Andrei P,Karagiannis George S,Martínez-Morillo Eduardo,Dason Shawn,Dimitromanolakis Apostolos,Diamandis Eleftherios P

Abstract

Abstract Background Down syndrome (DS), caused by an extra copy of chromosome 21, affects 1 in 750 live births and is characterized by cognitive impairment and a constellation of congenital defects. Currently, little is known about the molecular pathogenesis and no direct genotype-phenotype relationship has yet been confirmed. Since DS amniocytes are expected to have a distinct biological behaviour compared to normal amniocytes, we hypothesize that relative quantification of proteins produced from trisomy and euploid (chromosomally normal) amniocytes will reveal dysregulated molecular pathways. Results Chromosomally normal- and Trisomy 21-amniocytes were quantitatively analyzed by using Stable Isotope Labeling of Amino acids in Cell culture and tandem mass spectrometry. A total of 4919 unique proteins were identified from the supernatant and cell lysate proteome. More specifically, 4548 unique proteins were identified from the lysate, and 91% of these proteins were quantified based on MS/MS spectra ratios of peptides containing isotope-labeled amino acids. A total of 904 proteins showed significant differential expression and were involved in 25 molecular pathways, each containing a minimum of 16 proteins. Sixty of these proteins consistently showed aberrant expression from trisomy 21 affected amniocytes, indicating their potential role in DS pathogenesis. Nine proteins were analyzed with a multiplex selected reaction monitoring assay in an independent set of Trisomy 21-amniocyte samples and two of them (SOD1 and NES) showed a consistent differential expression. Conclusions The most extensive proteome of amniocytes and amniotic fluid has been generated and differentially expressed proteins from amniocytes with Trisomy 21 revealed molecular pathways that seem to be most significantly affected by the presence of an extra copy of chromosome 21.

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Molecular Biology,Molecular Medicine,Clinical Biochemistry,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3