Abstract
Abstract
Background
Malaria has continued to be a threat to man and his wellbeing, especially Africans and Asians. New antimalarial drugs are urgently needed to mitigate malaria treatment failure due to resistant Plasmodium species. Medicinal plants used by indigenous Nigerians for treating fever and malaria such as Sida acuta Burm.f. (Malvaceae) could be a promising source of lead compounds for developing new generations of antimalarial drugs. The effects of ethanol extract of S. acuta leaves (EESAL) on malaria parasitemia, haematological and biochemical status of P. berghei-infected mice were investigated, using the 4-day curative test.
Methodology
EESAL was prepared by maceration method. The phyto-constituents and acute toxicity profile of the extract were evaluated using standard protocols. In addition, malaria parasitemia and chemo-suppression, and indicators of haematological and biochemical status of P. berghei-infected mice treated with EESAL were assessed.
Results
At 200, 400 and 600 mg/kg/d b.w., p.o doses for 4 consecutive days, EESAL significantly (p < 0.05) decreased parasitaemia and suppressed malaria parasite by 89.64%, 95.95% and 97.38%, respectively comparable to negative control. The reduction in percentage malaria parasitemia by EESAL is comparable to Artemether (140 mg/kg/d b.w., p.o) used as standard antimalarial drug in this study. The packed cell volume (PCV), haemoglobin (Hb) concentration, and red blood cell (RBC) and white blood cell (WBC) counts of negative control are significantly (p < 0.05) higher than normal control. However, parasitized-EESAL-treated mice have significantly (p < 0.05) higher PCV value, Hb concentration and RBC and WBC counts than negative control. Similarly, treatment of parasitized mice with EESAL restored some indicators of the antioxidant, lipid peroxidation, lipid profile and liver status altered by malaria. In addition, EESAL was tolerable up to 5000 mg/kg b.w., p.o.
Conclusion
These results indicate that the EESAL possesses antimalarial activity and normalizes alterations in haematological and biochemical status of malaria-infected mice.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science