Author:
Bekhouche Mohamed,Benyammi Roukia,Slaoui Majda Khelifi,Krimat Soumia,Paris Cedric,Khelifi Lakhdar,Morsli Abdelkader
Abstract
Abstract
Background
In humans, various diseases are associated with the accumulation of free radicals. The antioxidants can scavenge free radicals and reduce their impact; thus, the search for effective natural antioxidants of plant origin is indispensable. The present study aims to determine, for the first time, the flavonoid compounds profile and to investigate the free radical scavenging and antioxidant properties of the methanolic extract of Taxus baccata L. from Algeria.
Methods
The determination of the flavonoid compound profile of the methanolic extract of Taxus baccata L. was established using high-performance liquid chromatography with diode-array detection coupled to electrospray ionization tandem mass spectrometry (HPLC–DAD–ESI–MS/MS). The total flavonoid content (TFC) was performed according to the aluminum chloride colorimetric method, while the free radical scavenging and antioxidant activities were carried out using three methods, namely 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical assay, 2,2'-azino-bis3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical assay and ferric reducing antioxidant power (FRAP) Assay.
Results
A total of 26 compounds including flavon-3-ols, flavanonols, flavones, flavonols and bioflavonoids were characterized and identifiedusing HPLC–DAD–ESI–MS/MS analysis, five were reported for the first time such as taxifolin, apigenin, apigenin 7-O-glucoside, isorhamnetin 3-O-rutinoside and robustaflavone. The plant extract exhibited high total flavonoid content (TFC = 204.26 ± 6.02 mg RE/g dry extract) which corresponded to its strong radical scavenging activities [(DPPH IC50 = 35.31 ± 0.29 µg/ml and ABTS IC50 = 8.27 ± 0.52 µg/ml)] as compared to the synthetic antioxidant BHT [(DPPH IC50 = 78.96 ± 5.70 µg/ml and ABTS IC50 = 13.56 ± 0.06 µg/ml)]. However, the methanolic extract of T. baccata showed the lowest ferric reducing ability as compared to the positive controls (BHT, BHA, ascorbic acid, trolox and quercetin).
Conclusion
Our results imply that the Taxus Baccata L. might be a potential source for the isolation of natural antioxidant compounds.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference59 articles.
1. Coughlan P, Hook ILI, Kilmartin L, Hodkinson TR. Phylogenetics of Taxus using the internal transcribed spacers of nuclear ribosomal DNA and plastid trnL-F regions. Horticulturae. 2020. https://doi.org/10.3390/horticulturae6010019.
2. García JC. Biogeografía del tejo (Taxus baccata L.) en el norte de África. In: Generalitat Valenciana, Conselleria de Territori i Habitatge, editors. El tejo en el Mediterráneo occidental: Jornadas Internacionales sobre el tejo y las tejeras en el Mediterráneo occidental; 2007. p. 177–183.
3. Juyal D, hawani V, Thaledi S, Joshi M. Ethnomedical properties of Taxus Wallichiana Zucc. (Himalayan yew). J Tradit Complement Med. 2014;4:159–61. https://doi.org/10.4103/2225-4110.136544.
4. Durak ZE, Büber S, Devrim E, Kocaoğlu H, Durak İ. Aqueous extract from Taxus baccata inhibits adenosine deaminase activity significantly in cancerous and non cancerous human gastric and colon tissues. Pharmacogn Mag. 2014;10:214–6.
5. Milutinović MG, Stanković MS, Cvetković DM, Topuzović MD, Mihailović VB, Marković SD. Antioxidant and anticancer properties of leaves and seed cones from European yew (Taxus baccata L). Arch Biol Sci. 2015;67:525–34.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献